I have had that clock for decades and it uses a silver oxide button cell battery (number 371). I have to replace the battery about once per year and wondered if that made sense based on the battery capacity and the current drain the clock presents to the battery. I expected the battery to last longer so I wanted to know if I was purchasing inferior batteries. These 1.5 V batteries are rated for about 34 mA-hours. So I set out to measure the current drain using our N6705B DC Power Analyzer with an N6781A 2-Quadrant Source/Measure Unit for Battery Drain Analysis power module installed. Making the measurement was simple…..making the connections to the tiny, delicate battery connection points was the challenging part. After one or two failed attempts (I was being very careful because I did not want to damage the connections), I solicited the help of my colleague, Paul, who handily came up with a solution (thanks, Paul!). Here is the final setup and a close-up of the connections:
Given the average current draw, I can calculate how long I would expect a 34 mA-hour battery to last:
34 mAh / 3.430 uA average current = 9912.54 hours = about 1.13 years
This is consistent with me changing the battery about every year, so once again, all makes sense in the world of energy and electronics (whew)! Thanks to the capabilities of the N6705B DC Power Analyzer, I now know the batteries I’m purchasing are lasting the expected time given the current drawn by the clock. How much current is your product drawing from its battery?