Showing posts with label DC current. Show all posts
Showing posts with label DC current. Show all posts

Wednesday, March 11, 2015

Comparing effects of using pulsed and steady state power to illuminate a high brightness LED

I was having a discussion here with a colleague about the merits of powering a high brightness LED (HBLED) using pulsed power versus using steady state DC power.

My opinion was: “Basically, amperes in proportionally equates to light flux out, so you will get about the same amount of illumination whether it is pulsed or DC.”

His argument was: “Because the pulses will be brighter, it’s possible the effective illumination that’s perceived will be brighter. Things appear to be continuous when discrete fixed images are updated at rates above thirty times a second, and that should apply to the pulsed illumination as well!”

I countered: “It will look the same and, if anything, will be less efficient when pulsed!”

So instead of continuing our debate we ran a quick experiment. I happened to have some HBLEDs so I hooked one up to an N6781A DC source measure module housed in an N6705B DC Power Analyzer sitting at my desk, shown in Figure 1. The N6781A has excellent current sourcing characteristics regardless whether it is DC or a dynamic waveform, making it a good choice for this experiment.



Figure 1: Powering up an HBLED

First we powered it up with a steady state DC current of 100 mA. At this level the HBLED had a forward voltage drop of 2.994 V and resulting power of 0.2994 W, as seen in Figure 2, captured using the companion 14585A control and analysis software.



Figure 2: Resulting HBLED voltage and power when powered with 100 mA steady state DC current

We then set the N6781A to deliver a pulsed current of 200 mA with a 50% duty cycle, so that its average current was 100 mA. The results were again captured using the 14585A software, as shown in Figure 3.


Figure 3: Resulting HBLED voltage and power when powered with 200 mA 50% DC pulsed current

Switching back and forth between steady state DC and pulsed currents, my colleague agreed, the brightness appeared to be comparable (just as I had expected!).  But something more interesting to note is the average current, voltage, and power. These values were obtained as shown in Figure 3 by placing the measurement markers over an integral number of waveform cycles. The average current was 100 mA, as expected. Note however that the average voltage is lower, at 2.7 V, while the average power is higher, at 0.3127 W! At first the lower average voltage together with higher average power would seem to be a contradiction. How can that be?

First, in case you did not notice, the product of the RMS voltage and RMS current are 0.3897 W which clearly does not match our average power value displayed. What, another contradiction? Why is that? Multiplying RMS voltage and RMS current will give you the average power for a linear resistive load but not for a non-linear load like a HBLED. The average power needs to be determined by taking an overall average of the power over time computed on a point-by-point basis, which is how it is done within the 14585A software as well as within our power products that digitize the voltage and current over time. Second, the average voltage is lower because it drops down towards zero during periods of zero current. However it is greater during the periods when 200 mA is being sourced through the HBLED and these are the times where power is being consumed.

So here, by using pulsed current, our losses ended up being 4.4% greater when powered by the comparable steady state current. These losses are mainly incurred as a result of greater resistive drop losses in the HBLED occurring at the higher current level.

There is supposed to be one benefit however of using pulsed power when powering HBLEDs. At different steady state DC current levels there is some shift in their output light spectrum. Using pulsed current provides dimming control while maintaining a constant light spectrum. This prevents minor color shifts at different illumination levels. Although I would probably never notice it!

Wednesday, November 13, 2013

How to Make More Accurate Current Measurements

There are a number of ways to make current measurements, including magnetically coupled probes, Hall-effect devices, and even some more exotic field sensing probes, but a good quality resistive shunt really cannot be beat in terms of accuracy, bandwidth, and overall general performance.

We likewise make considerable use of high performance shunts in our DC power products to provide extremely accurate current read-back of load currents, spanning the full range of output loading. Not only is the quality and design of the shunt itself critical, but how you treat it and make use of it are all equally important to get great current measurement performance. At the surface it may seem simple; it’s just measuring the voltage drop across a resistor. In reality it is no simple task. It requires appropriate metrological resources to validate the performance.  There are a lot of potential sources of error to recognize, quantify, and contend with.

When working with folks I sometimes encounter those who prefer to develop in their own current measurement into their test systems, instead of relying on the current read-back system already build into their system DC source. There are times when this is the right thing to do and is fine when done correctly. However some of the time there is the preconception that the DC source cannot provide an accurate measurement. The reality is there is a wide selection of DC sources available spanning a wide range of performance, Most likely something will be available that adequately addresses one’s needs. A second issue is, when developing current measurement capabilities for a test system, is truly recognizing all the potential sources of error. It goes well beyond having a good DVM and a good shunt resistor in the test system.  

A colleague here in our R&D group, Mark Peffley, wrote a comprehensive article that was just published. It covers a myriad of things in depth to be taken into consideration in order to make accurate current measurements, including:
  • Temperature dependencies
  • Self-heating and thermal equilibrium
  • Temperature gradients
  • Thermo-electric effects
  • Additional sources of offset errors
  • Voltage drop considerations
  • Shunt selection practical considerations
  • And more!
So using a shunt is a great foundation for making highly accurate current measurements. That’s why we use them in our power products. But, as Mark points out, there is a lot more to it than just Ohm’s law. When using one of our power products we factor all these things in so that they become a non-issue for the user. However, if you do plan to add current measurement into your test systems then I highly recommend reading Mark’s article “Obtain Accurate Current Measurement” (click here to access) as it is a great reference on the subject!

Monday, April 8, 2013

Why would a DC power supply have RMS current readback?


During a conversation with a colleague at work one day the topic of having RMS current readback on DC power supplies came up. It is a measurement capability we have on a number of our system DC power supplies. He posed the question: Why the reason for having such a capability? I actually had not been involved with the original investigations identifying what reasons this was added so I instead had to rely on my intuition. That’s not always a good thing but it did help me out this time at least!

He had argued that since you are feeding a fixed DC voltage into the device you are powering, the power consumption is going to be a product of the DC (average) voltage and DC (average) current, regardless of whether the current is purely DC, or if it is dynamic, having a substantial amount of AC content. This is true, as I have illustrated in figure 1, comparing purely DC and pulsed currents being drawn by a load. For purely DC current the DC and RMS values are the same. In comparison, for a pulsed current the RMS value is greater the DC value. Regardless, the RMS current value does not factor into the overall power consumption of the DUT here. The power consumption is still the product of the DC voltage and current.


Figure 1: Comparing power consumption of a DC powered DUT drawing constant and pulsed currents

So why provide an RMS current measurement? Well there can be times when this can prove useful, even when the DUT is powered by a fixed DC voltage. Consider the scenario depicted in Figure 2.


Figure 2: Properly sizing a protection fuse on a DC powered device

Many products incorporate fuses to protect from over-current and subsequent damage, usually brought on due to misuse or component failure. Fuses are rated by their RMS current handling, not the DC current. In the case of the pulsed loading the RMS current is twice the DC current and the resulting power in the fuse is four times that for a constant current.  If the fuse was selected based on the DC current value it would most certainly fail well below the required operating level!

My colleague conceded that this fuse example was a legitimate case where RMS current measurement would indeed be useful. Maybe it was not a frivolous capability after all. No doubt sizing fuses is just one of many reasons why RMS measurement on DC products can be useful!