Showing posts with label power ratings. Show all posts
Showing posts with label power ratings. Show all posts

Monday, April 8, 2013

Why would a DC power supply have RMS current readback?


During a conversation with a colleague at work one day the topic of having RMS current readback on DC power supplies came up. It is a measurement capability we have on a number of our system DC power supplies. He posed the question: Why the reason for having such a capability? I actually had not been involved with the original investigations identifying what reasons this was added so I instead had to rely on my intuition. That’s not always a good thing but it did help me out this time at least!

He had argued that since you are feeding a fixed DC voltage into the device you are powering, the power consumption is going to be a product of the DC (average) voltage and DC (average) current, regardless of whether the current is purely DC, or if it is dynamic, having a substantial amount of AC content. This is true, as I have illustrated in figure 1, comparing purely DC and pulsed currents being drawn by a load. For purely DC current the DC and RMS values are the same. In comparison, for a pulsed current the RMS value is greater the DC value. Regardless, the RMS current value does not factor into the overall power consumption of the DUT here. The power consumption is still the product of the DC voltage and current.


Figure 1: Comparing power consumption of a DC powered DUT drawing constant and pulsed currents

So why provide an RMS current measurement? Well there can be times when this can prove useful, even when the DUT is powered by a fixed DC voltage. Consider the scenario depicted in Figure 2.


Figure 2: Properly sizing a protection fuse on a DC powered device

Many products incorporate fuses to protect from over-current and subsequent damage, usually brought on due to misuse or component failure. Fuses are rated by their RMS current handling, not the DC current. In the case of the pulsed loading the RMS current is twice the DC current and the resulting power in the fuse is four times that for a constant current.  If the fuse was selected based on the DC current value it would most certainly fail well below the required operating level!

My colleague conceded that this fuse example was a legitimate case where RMS current measurement would indeed be useful. Maybe it was not a frivolous capability after all. No doubt sizing fuses is just one of many reasons why RMS measurement on DC products can be useful!

Thursday, August 23, 2012

Early Power Transistor Evolution, Part 1, Germanium


We recently completed our “Test of Time” power supply contest. Contestants told us about how they were using their Harrison Labs/HP/Agilent DC power supplies and the older the power supply, the better. It was pretty fascinating to see the many innovative way these power supplies were being used. It was also fascinating to see so many “vintage” power supplies still functional and in regular use after many decades. Several of them even being vacuum tube based!

One key component found in most all power supplies from the mid 1950s on is, no surprise, power transistors. Shortly after manufacturers were able to make reliable and reasonably rugged transistors in the mid 1950s they also developed transistors that would handle higher currents and power. Along with higher power came the need to dissipate the power. This led to some interesting packaging; some familiar and others not as familiar. Hunting through my “archives” I managed to locate some early power transistors. In review of their characteristics it was quite enlightening to see how they evolved to become better, faster, and cheaper! I also found it is quite challenging to find good, detailed, and most especially, non-conflicting information on these early devices.

Germanium was the first semiconducting material widely adopted for transistors, power and otherwise. One early power transistor I came across was the 2N174, shown in Figure 1.



Figure 1: 2N174 Power Transistor

Following are some key maximum ratings on the 2N174 power transistor:

  •  VCEO = -55V
  • VCBO = -80V
  •  VEBO= -60V
  •  IC = 15A
  • PD = 150W
  • hfe= 25
  •  fT = 10 kHz
  •  Thermal resistance = 0.35 oC/W
  •  TJ= 100 oC
  • Package: TO-36
  • Polarity: PNP
  • Material/process: Germanium alloy junction

The alloy junction process provided a reliable means to mass produce transistors. Most of the earlier transistors are PNP with N type semiconductor “pellets” or “dots” of typically indium alloyed to a P type germanium wafer. This process favored PNP production as the indium had a lower melting point than the N-type germanium bases. Still, this was a relatively slow and expensive process as they were basically manufactured one at a time. These early alloy junction transistors were not passivated and therefore needed to be hermetically packaged to prevent contamination and degradation. Often referred to as a “door knob” package, the TO-36 stud mount package was quite a piece of work and was no doubt expensive to as a result. It had a pretty impressive junction-to-case thermal resistance but given the maximum temperature of just 100 oC, low thermal resistance was necessary in order to operate the transistor at a reasonable power level. The low maximum operating temperature of germanium was one of most limiting attributes, especially for power applications. The transition frequency, fT of just 10 kHz was also extremely low. This is the frequency where current gain, hfe, drops down to 1, ceasing to be an effective amplifier. The 2N174 appears to have originated in the later 1950’s.

Another early power transistor we used in our HP 855B bench power supplies is the 2N1532, as shown in Figure 2.



Figure 2: 2N1532 power transistors used in a Harrison Labs Model 855B power supply.

Following are some key maximum ratings on the 2N1532 power transistor:

  • VCEO = -50V 
  • VCBO = -100V
  • VEBO= -50V
  •  IC = 5A
  • PD = 94W
  • hfe= 20 to 40
  • fT = 200 kHz
  • Thermal resistance = 0.8 oC/W
  •  TJ= 100 oC
  • Package: TO-3
  • Polarity: PNP
  • Material/process: Germanium alloy junction
The 2N1532 is also a germanium PNP power transistor, similar to a number of other power transistors of the time. It is packaged in the widely recognizable TO-3 diamond-shaped hermetic package.  Being a much less complex case design it must have been considerably less costly than the TO-36 package in Figure 1, and has become one of the most ubiquitous hermetic power semiconductor packages of all times. To keep junction temperature rise down the Harrison Labs Model  855B power supply used three 2N1532 transistors in its series regulator to deliver just  18 volts and 1.5 amps output. It’s no wonder why these power supplies have stood the “Test of Time” as these transistors are running significantly de-rated, at just a fraction of their maximum power here.  It is also noteworthy to see the transition frequency of 200 kHz is 20 times that of the 2N174. This is one of the more questionable data I had found but if it is accurate then clearly design and process improvements contributed to this performance improvement.  While date codes on some of the capacitors in this model 855B power supply place its manufacture in 1962, early germanium PNP power transistors in TO-3 packages like these also typically originate back in the later 1950’s.

While germanium transistors have much greater conductivity, lower forward- and saturation voltage drops compared to silicon transistors, silicon ultimately won out in the end, especially for power transistor applications. Stay tuned for my second part in an upcoming posting. Discover how silicon evolved to rule the day for power transistors!

Monday, January 30, 2012

Watts and volt-amperes ratings – what’s the difference and how do I choose an inverter based on them?

At the end of September, I posted about hurricane Irene and inverters. In that post (click here to read), I talked about the power ratings for inverters and just skimmed the surface about the differences between ratings in watts (W) and volt-amperes (VA). In this post, I want to go further into detail about these differences. Both watts and VA are units of measure for power (in this case, electrical). Watts refer to “real power” while VA refer to “apparent power”.

Inverters take DC power in (like from a car battery) and convert it to AC power out (like from your wall sockets) so you can power your electrical devices that run off of AC (like refrigerators, TVs, hair dryers, light bulbs, etc.) from a DC source during a blackout or when away from home (like when you are camping). Note that this power discussion is centered on AC electrical power and is a relatively short discussion about W, VA, and inverters. Look for a future post with more details about the differences between W and VA.

Watts: real power (W)
Watts do work (like run a motor) or generate heat or light. The watt ratings of inverters and of the electronic devices you want to power from your inverter will help you choose a properly sized inverter. Watt ratings are also useful for you to know if you have to get rid of the heat that is generated by your device that is consuming the watts or if you want to know how much you will pay your utility company to use your device when it is plugged in a wall socket since you pay for kilowatt-hours (power used for a period of time).

The circuitry inside all electronic devices (TVs, laptops, cell phones, light bulbs, etc.) consumes real power in watts and typically dissipates it as heat. To properly power these devices from an inverter, you must know the amount of power (number of watts, abbreviated W) each device will consume. Each device should show a power rating in W on it somewhere (390 W in the picture below) and you can just add the W ratings of each device together to get the total expected power that will be consumed. Most inverters are rated to provide a maximum amount of power also shown in watts (W) – they can provide any number of watts less than or equal to the rating. So, choose an inverter that has a W rating that is larger than the total number of watts expected to be consumed by all of your devices that will be powered by the inverter.


Volt-Amperes: apparent power (VA)
VA ratings are useful to get the amount of current that your device will draw. Knowing the current helps you properly size wires and circuit breakers or fuses that supply electricity to your device. A VA rating can also be used to infer information about a W rating if the W rating is not shown on a device, which can help size an inverter. Volt-amperes (abbreviated VA) are calculated simply by multiplying the AC voltage by the AC current (technically, the rms voltage and rms current). Since VA = Vac x Aac, you can divide the VA rating by your AC voltage (usually a known, fixed number, like 120 Vac in the United States, or 230 Vac in Europe) to get the AC current the device will draw. To combine the apparent power (or current) of multiple devices, there is no straightforward way to get an exact total because the currents for each device are not necessarily in phase with each other, so they don’t add linearly. But if you do simply add the individual VA ratings (or currents) together, the total will be a conservative estimate to use since this VA (or current) total will be greater than or equal to the actual total.


What if your device does not show a W rating?
Some electrical devices will show a VA rating and not a W rating. The number of watts (W) that a device will consume is always less than or equal to the number of volt-amperes (VA) it will consume. So if you need to size an inverter based on a VA rating when no W rating is shown, you will always be safe if you assume the W rating is equal to the VA rating. For example, assume 300 W for the 300 VA device shown in the picture above. This assumption may cause you to choose an oversized inverter, but it is better to have an inverter will too much capacity than one with too little capacity. An inverter with too little capacity will make it necessary for you to unplug some of your devices; otherwise, the inverter will simply turn itself off to protect its own circuitry each time you try to start it up, so it won’t work at all if you try to pull too many watts from it.

Some electrical devices will show a current rating (shown in amps, or A) and not a VA rating or W rating. Usually, this current rating is a maximum expected current. Maximum current usually occurs at the lowest input voltage, so calculate the VA by multiplying the current rating (A) times the lowest voltage shown on the device. Then, assume the device consumes an equal number of W as mentioned in the previous paragraph. For example, the picture below shows an input voltage range of 100 to 240 V and 2 A (all are AC). The VA would be the current, 2 A, times the lowest voltage, 100, which yields 200 VA. You could then assume this device consumes 200 W.