Showing posts with label fault protection. Show all posts
Showing posts with label fault protection. Show all posts

Friday, December 12, 2014

Why Does Over Current Protect (OCP) have a Programmable Delay Value in the First Place?

Since I am on a roll about over current protect (OCP), having just completed a two-part posting “Why does the response time of OCP vary on the power supply I am using and what can I do about it?” (Review part 1) (Review part 2) there is yet another aspect about OCP that is worth bringing up at this time. And that is “why does OCP have a programmable delay value in the first place?” This actually came up in a discussion with a colleague here after having read my part posting.

It may seem a bit ironic that OCP has a programmable delay in that in my posting on OCP I shared ideas on how one can minimize the response time delay encountered. But this is not contradictory. One may very well want to minimize it, eliminating extra delay being encountered, but not necessarily eliminate it altogether. As can be seen in my previous postings, I had programmed the OCP delay time to 5 ms.

The programmable OCP delay does serve a purpose, and that is to prevent false OCP trips. Adding some delay time prevents these false trips.  For someone who knows the root cause of false OCP tripping they might be half right. There are actually been two main causes of false OCP trips which are prevented by adding some delay time.

The original problem with OCP was that it would be falsely tripped when output voltage settings were changed on the power supply, due to capacitive loading at the test fixture or within the DUT. This is especially prominent with inrush current when first bringing up the voltage to power the DUT. An OCP delay prevents false triggering under these conditions. To correct the false tripping the delay would be invoked when output programming changes were made. As one example, the OCP delay description in our manual for our 663x series power supplies states:

This command sets the time between the programming of an output change that produces a constant
current condition (CC) and the recording of that condition by the Operation Status Condition register. The
delay prevents the momentary changes in status that can occur during reprogramming from being
registered as events by the status subsystem. Since the constant current condition is used to trigger
overcurrent protection (OCP), this command also delays OCP.”

Under this situation the momentary overcurrent is induced by the power supply. Although not nearly as much as in issue in practice, momentary overcurrents can also be DUT-induced as well. This is the second situation that can cause a false tripping of the OCP. The DUT may be independently turned on after the bias voltage has already been on and draw a surge of current. Or the DUT may change mode of operation and draw a temporary surge of current.  If the OCP delay is invoked only by an output programming change it does not have any effect in these situations.

On later generation products, such as our N6700, N6900, and N7900 series, the user also has the ability to programmatically select between having the OCP delay activate from either an output change, or from going into CC condition. This gives the user a way to remain consistent with original operation or have OCP delay effective for momentary DUT-induced overload currents as well!


Wednesday, September 10, 2014

How do I protect my DUT against my power supply sense lines becoming disconnected, misconnected, or shorted?

The remote sense lines are a vital part of any good system power supply. As shown in Figure 1, by using a second, separate pair of leads for sensing, the output voltage is now regulated right at the DUT rather than at the output terminals on the power supply. Any voltage drops in the force leads are compensated for; assuring the highest possible voltage accuracy is achieved right at the DUT.




Figure 1: Remotely sensing and regulating output voltage at the DUT

Of course for this to work correctly the sense leads need to have a good connection at the DUT. However, what if the sense leads become disconnected, misconnected, or shorted?

One might think if one or both of the sense leads became disconnected, the sensed voltage would then become zero, causing the output voltage on the force leads to climb up out of control until the over voltage protect (OVP) trips. This turns out not to be the case, as a co-contributor here, Gary had pointed out in a previous posting “What happens if remote sense leads open?” (Click here to review). Basically a passive protection mechanism called sense protect maintains a backup connection between the sense line and corresponding output terminal inside the power supply in the event of a sense line becoming disconnected.

While sense protect is an indispensable feature to help protect your DUT by preventing runaway over-voltage, if a sense lead is open the voltage at your DUT is still not as accurate as it should be due to uncompensated voltage drops in the force leads. This can lead to miscalibrated DUTs and you would not even know that it is happening. To address this some system power supplies include an active open sense lead fault detection system. As one example our 663xx Mobile Communications DC Sources check the sense lead connections during each output enable and will issue a fault protect and shut down the output if one or both sense leads become disconnected. It will also let you know which of the sense leads are disconnected. It can be enabled and disabled as needed. I had written about this in a previous posting “Open sense lead detection, additional protection for remote voltage sensing” (Click here to review).

Taking sense protection further, we have incorporated a system we refer to as sense fault detect (SFD) in our N6900A and N7900A Advanced Power System (APS). It can be enabled or disabled. When enabled it continually monitors the sense lead connections at all times. If it detects a sense fault it sets a corresponding bit in the questionable status group register as well as turn on status annunciator on the front panel to alert the user, but does not disable the output. Through the expression signal routing system a “smart trigger” can be configured as shown in Figure 2 to provide a protect shutdown on the event of a sense fault detection.  In all, sense fault detect on APS provides a higher level of protection and flexibility.




Figure 2: Configuring a custom opens sense fault protect on the N6900/N7900 APS

What happens if the sense leads become shorted? Unlike open sense leads, in this case the output voltage can rise uncontrolled. The safeguard for this relies on the over voltage protect system. The same thing happens if the sense leads are reversed. The power supply will think the output voltage is too low and keep increasing the output voltage in an attempt to correct it. Again the safeguard for this relies on the over voltage protect system. The N6900/N7900 APS does actually distinguish the difference when the sense leads are reversed by generating a negative OVP (OV-) fault, giving the user more insight on what the fault is to better help in rectifying the problem.

Remote voltage sensing provides a great benefit by being able to accurately control the voltage right at the DUT. Along with the appropriate safeguards against sense lead misconnections you get all the benefit without any of the corresponding risks!

Remote sense protect and sense fault detect were just two of many topics about in my seminar “Protect your device against power related damage during test” I gave last month. As it was recorded it is available on demand if you have interest in learning more about this topic. You can access the sign up from the following link: (Click here for description and to register)

Tuesday, August 5, 2014

Upcoming Seminar on Protecting Your Device against Power-Related Damage during Test

Here on “Watt’s Up?” we have provided a good number of posts about various protection features incorporated into system power supplies to protect your device against power-related damage during test. Just recently my colleague Gary posted “How Does Power Supply Over-Voltage Work?” (Click here to review) Here he reviews inner workings of different OVP implementations.  I recently posted “Safeguarding Your Power-Sensitive DUTs against an Over-Power Condition” (Click here to review) Here I go over a method to protect your DUT against excess power when other power supply features like over current protection may be less than ideal.

The reason why we frequently share power-related protection topics here is protecting your DUT is extremely important, there are a lot of different capabilities incorporated in system power supplies for this purpose, and there are a lot of practical considerations when putting them to use.  

Hopefully a number of you have found our posts on protection-related topics of help. Because this is a very important topic and there is so much more you should know about it I will be giving a live web-based seminar “Protecting Your Device against Power-Related Damage during Test” on August 20th, just a few weeks away from today. I will be going over a number of protection-related topics which we have not yet covered here on “Watt’s Up?”.  One of my objectives is to provide a more holistic view of the many ways a system power supply is able to better safeguard against power-related damage as well as what is practical to expect when using these various capabilities incorporated in the power supply.

You can register online at the following (Click here for description and registration page) In case you are not able to attend the live event on August 20 you will be able to register and listen to seminar afterward as well, as it will be recorded.


So if protecting your device against power-related damage is important to you I hope you are able to attend the seminar!

Monday, June 23, 2014

Safeguarding your power-sensitive DUTs from an over power condition

Today’s system DC power supplies incorporate quite a variety of features to protect both the device under test (DUT) as well as the power supply itself from damage due to a fault condition or setting mishap. Over voltage protect (OVP) and over current protect (OCP) are two core protection features that are found on most all system DC power supplies to help protect against power-related damage.

OVP helps assure the DUT is protected against power-related damage in the event voltage rises above an acceptable range of operation. As over voltage damage is almost instantaneous the OVP level is set at reasonable margin below this level to be effective, yet is suitably higher than maximum expected DUT operating voltage so that any transient voltages do not cause false tripping. Causes of OV conditions are often external to the DUT.

OCP helps assure the DUT is protected against power-related damage in the event it fails in some fashion causing excess current, such as an internal short or some other type of failure. The DUT can also draw excess current from consuming excess power due to overloading or internal problem causing inefficient operation and excessive internal power dissipation.

OVP and OCP are depicted in Figure 1 below for an example DUT that operates at a set voltage level of 48V, within a few percent, and uses about 450W of power. In this case the OVP and OCP levels are set at about 10% higher to safeguard the DUT.


Figure 1: OVP and OCP settings to safeguard an example DUT

However, not all DUTs operate over as limited a range as depicted in Figure 1. Consider for example many, if not most all DC to DC converters operate over a wide range of voltage while using relatively constant power. Similarly many devices incorporate DC to DC converters to give them an extended range of input voltage operation. To illustrate with an example, consider a DC to DC converter that operates from 24 to 48 volts and runs at 225W is shown in Figure 2. DC to DC converters operate very efficiency so they dissipate a small amount of power and the rest is transferred to the load. If there is a problem with the DC to DC converter causing it to run inefficiently it could be quickly damaged due to overheating. While the fixed OCP level depicted here will also adequately protect it for over power at 24 volts, as can be seen it does not work well to protect the DUT for over power at higher voltage levels.


Figure 2: Example DC to DC converter input V and I operating range

A preferable alternative would instead be to have an over power protection limit, as depicted in Figure 3. This would provide an adequate safeguard regardless of input voltage setting.


Figure 3: Example DC to DC converter input V and I operating range with over power protect

As an over power level setting is not a feature that is commonly found in system DC power supplies, this would then mean having to change the OCP level for each voltage setting change, which may not be convenient or desirable, or in some cases practical to do. However, in the Agilent N6900A and N7900A Advance Power System DC power supplies it is possible to continually sense the output power level in the configurable smart triggering system. This can in turn be used to create a logical expression to use the output power level to trigger an output protect shutdown. This is depicted in Figure 4, using the N7906A software utility to graphically configure this logical expression and then download it into the Advance Power System DC power supply. As the smart triggering system operates at hardware speeds within the instrument it is fast-responding, an important consideration for implementing protection mechanisms.


Figure 4: N7906A Software utility graphically configuring an over power protect shutdown

A glitch delay was also added to prevent false triggers due to temporary peaks of power being drawn by the DUT during transient events. While the output power level is being used here to trigger a fault shutdown it could have been just as easily used to trigger a variety of other actions as well.

Wednesday, March 20, 2013

Open sense lead detection, additional protection for remote voltage sensing


A higher level of voltage accuracy is usually always needed for powering electronic devices under test (DUTs). Many devices provide guaranteed specifications for operating at minimum, nominal, and maximum voltages, so the voltage needs to accurate as to not require unacceptable amounts of guard banding of the voltage settings.

One very significant factor that affects the accuracy of the voltage at the DUT is the voltage drop in the wiring between the output terminals of the power supply and the actual DUT fixture, due to wiring’s inherent resistance, as shown in Figure 1.



 A standard feature of most all system DC power supplies is remote voltage sensing. Instead of the voltage being regulated at the output terminals of the DC power supply’s output terminal, it is instead sensed and regulated at the DUT itself, compensating for the voltage drop in the wiring. Additional details of this are documented in an earlier posting: “Use remote sense to regulate voltage at your load”

While remote voltage sensing addresses the problem of voltage drop in wiring affecting the voltage accuracy at the DUT, it then raises the concern of what happens if one of the sense lines becomes disconnected. Will the DC power supply voltage climb up to it maximum potential causing my DUT to be damaged?  Although this is a very legitimate concern, often the voltage is usually kept within a reasonable range of the setting by a feature referred to as “open sense lead protection”. A deeper dive on the issue of open sense lines and open sense lead protection are discussed at our posting: “What happens if remote sense leads open?”

Even with open sense lead protection and the voltage being kept within a reasonable range of the setting, this can be a concern for some customers who are relying on a high level of DC voltage accuracy at the DUT for test and calibration purposes. One categorical example of this is battery powered devices, where ADC circuits that need to precisely monitor the battery input voltage have to be accurately calibrated. If the voltage from the DC power supply has significant error, the DUT will be miss-calibrated.

One issue with open sense lead protection is it is a passive protection mechanism. It is simply a back up that takes over when a sense line is open. There is no way of knowing the sense lead is open. No error flag is set or fault condition tripped. The voltage being read back is the same as that is being regulated by the voltage sensing error amplifier, which is the same as the set voltage, so all looks fine from a read-back perspective. This is where open sense lead detection takes over. Open sense lead detection is a system that actively checks to see if the sense lines are doing their job. If not it lets the test system know there is a fault.

Open sense detection is not a common feature for most system DC power supplies. As one example we do employ it in our 663xx series Mobile Communications DC Sources as these are used for powering, testing and calibrating battery powered wireless devices. In the case of an open sense line condition it generates a fault condition and it keeps the output of the DC source powered down. It also provides status information on which of the sense lines are open as well.

Tuesday, March 12, 2013

What is a power supply’s over current protect (OCP) and how does it work?


One feature we include in our Agilent system DC power supplies for providing additional safeguard for overload-sensitive DUTs is over current protect, or OCP. While some may think this is something separate and independent of current limiting, OCP actually works in concert with current limiting.

Current limiting protects overload-sensitive DUTs by limiting the maximum current that can be drawn by the DUT to a safe level. There are actually a variety of current limit schemes, depending on the level of protection required to safeguard the DUT during overload. Often the current limit is relatively constant, but sometimes it is not, depending on what is best suited for the particular DUT. Additional insights on current limits are provided in an earlier posting, entitled “Types of current limits for over-current protection on DC power supplies“.

By limiting the current to a set level may DUTs are adequately protect from too much current and potential damage. When in current limit, if the overload goes away the power supply automatically goes back to constant voltage (CV) operation. However, current limit may not be quite enough for some DUTs that are very sensitive to overloads. This is where OCP works together with the current limit to provide an additional level of protection. With OCP turned on, when the DC power supply enters into current limit OCP takes over after a specified time delay and shuts down the output of the DC power supply. The delay time is programmable. This prevents OCP from shutting down the DC power supply from short current spikes and other acceptably short overloads that are not considered harmful. Like over voltage protect or OVP, after tripping the output needs to be disabled and an Output Protect Clear needs to be exercised in order to reset the power supply so that its output can be re-enabled.  Unlike OVP, OCP can be turned on and off and its default is usually off. In comparison, OVP is usually always enabled and cannot be turned off. A typical OCP event is illustrated in Figure 1.



Figure 1: OCP operation

When powering DUTs, either on the bench or in a production test system, it is always imperative that adequate safeguards are taken to protect both the DUT as well as the test equipment from inadvertent damage. Over current protect or OCP is yet another of many features incorporated in system DC power supplies you can take advantage of to protect overload-sensitive DUTs from damage during test!

Friday, February 15, 2013

Addressing the challenge of sequencing multiple bias supplies on and off


A challenge test engineers are perennially faced with is how to best sequence the bias voltages powering their DUT, when their DUT requires several bias voltages. Many DUTs are sensitive to sequencing and an improper sequence may lead to the DUT hanging up, or worse, suffer damage as a consequence. Not only is sequencing an issue when powering the DUT on, but it can also be an issue when powering the DUT down as well. In addition to sequencing, the slew rates of the various bias voltages can likewise be important to the DUT correctly powering on.

Simply relying on the timing of output-on and output-off commands sent from the test system controller to all the system DC power supplies individually tends to be far too imprecise, especially for critical sequencing timing requirements. The actual turn-on time of a typical system DC power supply can be many tens of milliseconds, and will vary considerably between different models of power supplies. The turn-on and turn-off times of each will need to be carefully characterized in order to know when a command for a specific bias voltage needs to be sent in relation to the other bias voltages. It is very likely the sequence of commands sent for outputs to turn on or off may be in a different sequence to the outputs actually changing, due to delay differences between different DC power supplies! An even bigger problem however is most system controllers are PCs which may randomly experience a large delay in sending out a command, if a higher level service request interrupts and pre-empts execution of the test program.

An alternative approach often taken is adding some custom hardware to control output sequencing. This can assure correct sequencing, but adds a lot of complexity, is usually inflexible, and may introduce other issues and compromises.

At Agilent we added system features to our N6700 series multiple output modular DC power system that support correct power-on and power-off sequencing. The output-on and output-off controls for the individual outputs get grouped together. The N6700 platform knows and compensates for the actual delays of all the various DC power output modules so that the desired delay value entered will be what is accurately achieved. Figure 1 shows setting up an N6705A to achieve a desired turn-on sequence of DC outputs for powering up a PC mother board. Figure 2 shows the actual result. A more detailed description of this PC motherboard example is given in our application note: “Biasing Multiple Input Voltage Devices in R&D”. While the N6705B DC Power Analyzer mainframe is regarded as being primarily for R&D, which this app note is referencing, the low profile rack-mountable N6700 series mainframes have these very same features and suit automated test systems in manufacturing and other environments.



Figure 1: Setting Output Delays



Figure 2: Output Turn-on Sequence Results


Just like setting up the power-on sequence, separate delays for power-off can also be entered, as seen in the set up screen shown in Figure 1, for the expected shut down of the DUT. However, what if there is an emergency shut down due to an abnormal condition and you still want to assure a certain power-off sequence? A colleague worked out the procedure for setting up the N6700 series DC power system to provide an orderly shutdown of the outputs, in the event of a problem on one of the outputs. In this example it happens to be an overvoltage condition on one of the outputs, but any of a number of fault conditions can be acted on to initiate an orderly shutdown. Details of this procedure are provided in another application note; “Avoid DUT Damage by Sequencing Multiple Power Inputs Off Upon a Fault Event”.

So when faced with the challenge of having to properly sequence multiple DC bias voltages powering your DUT, reconsider trying to engineer a solution to accomplish this. Instead, look for features that provide this kind of capability in the system DC power supplies you are looking to use, already built-in. It makes a lot of sense having sequencing built into the power supplies and it will make your life a lot easier!