Tuesday, September 30, 2014

How Do I Properly Wire My Output?

Hi everyone,


September has been a hectic month here at Keysight’s Power Supply Headquarters (to give you an idea of the kind of month it has been, my dog literally ate my passport a week before I left on an international trip) but I am back with another blog post for your reading pleasure.  Today we are going to talk about how to properly wire your power supply.  This is a common question.  Wiring is something that on the surface seems like it should be really easy but when you dig a little deeper there are many layers to consider.  The repercussions can be pretty severe as well.  With improper wiring, you can make a high performance power supply seem like a low performance benchtop supply.

First, let's talk about the things repercussions of improper wiring.  The first and probably most undesired result is that your voltage will be unstable.  I have seen this in my own former career as a test engineer.  The inductance from our wiring coupled with some capacitance in our test equipment resulted in an oscillation that caused a test to fail.  We spent a Saturday chasing this down and fixed it by properly wiring our system.   

The second undesired result is that your voltage rise time and fall times could be much longer than specified.  This will negatively affect your test throughput which in high volume manufacturing test could cost money due to increased test time.   Properly wiring your power supply will enable you to get the maximum throughput from your power supply.  

The last repercussion that I'll discuss is voltage overshoots and undershoots.  You want these to be as small as possible.  A large overshoot can possibly damage your DUT especially if you do not have your over voltage properly set. A voltage undershoot could cause your DUT to shut down due to a low voltage condition. 

All of these are real pains when you are trying to get your test set up and running.  There are ways to properly wire your system so you can get the maximum specs out of your power supply.  

The first and most basic wiring tip is to keep the wiring as short as possible.  The longer the wiring the higher the impedance from the wiring will be.  The table below shows some specifications on some standard wire sizes:


The second tip is to use remote sensing.  This will sense around all of the wiring drops from the wiring.  This is good practice at all times.  Remote sensing is cool.

The third tip is to twist your wires together.  The key thing to remember her is that you twist the + and - output together and the + sense and - sense together.  This will reduce the mutual inductance in the wires.  Never, ever twist the sense and output leads together.  

This is a picture of the spool of wire that we use for our sense wires here.  You can see the the wires are very tightly twisted together here:

The other option is to use special low inductance wiring.  If you look at the below picture, you can see that there are two flat conductors separated by an insulator.  This reduces the mutual inductance even more than twisting the wires.:


Our N678xA SMU DC Power Modules are very sensitive to how they are wired.  Here is a diagram showing the proper wiring for the N678xA:


The top three items I mentioned should be standard practice when you set up your system.  These are just great wiring practices.  Sometimes you need to go the extra mile.  Back when I was in the test group we followed all of these tips as best I could but due to the test system, we could not minimize the wire length enough.  Our solution was to parallel more wires between the power supply and the load that we were using.  Instead of one twisted pair, we used three twisted pairs in parallel.  This also reduces the impedance of the wiring because you are paralleling the conductors (paralleled inductance and resistance reduces).

One of our design engineers wrote a very good article that touched on this subject a bit.  You can check that out here: Article Link.  

I hope that this is useful to everyone.  Please let us know if you have any questions or comments.


Monday, September 29, 2014

Properly sequence multiple power inputs to protect your DUT

As I mentioned in a previous post, we have devoted a lot of time writing about protecting your device under test (DUT) from the two main DUT-destroying forces available from a power supply: excessive voltage and excessive current. Click here for one of the latest posts including a list to the other posts.

Today I’d like to cover another topic that can cause DUT failure due to a power supply. Some DUTs have multiple DC inputs and some of these multiple-input DUTs are sensitive to the order in which the inputs turn on or turn off. Subjecting the device to an uncontrolled sequence could cause latch-up or excessive current to flow resulting in compromised reliability or even immediate catastrophic failure of the DUT. So properly sequencing the multiple voltages at turn on and off is essential. My colleague, Ed Brorein, wrote a very similar post last year (click here) but I thought this topic was worth repeating especially since we added another series of power products with higher power that has this capability.

Various methods have been used in an effort to address the potential problem associated with improperly sequenced power inputs. Diodes can be placed from one input to another to clamp the voltage thereby preventing one input voltage from going too far above or below another input voltage but this method has limited effectiveness and variable results. Relays can be put in series with each input and controlled with timing circuitry but the relays introduce variable series impedance and timing is imprecise. FETs with associated control circuitry can be placed in series with each input however this method requires significant design time and adds complexity to the setup. Multiple DC power supplies can be controlled through software, but once again, timing is imprecise and response times can be slow.

Several years ago, I wrote an application note on a closely related topic (click here). The method that is most precise and introduces the fewest complications is to use a power supply system that has output sequencing integrated into the system itself. Keysight has several power supply systems that can accommodate precise output sequencing: the N6700 Modular Power System, N6705 DC Power Analyzer, and the more recently released N6900/N7900 Advance Power System. Each system offers the ability to precisely control the turn-on and turn-off sequence of multiple outputs. Timing is set with sub-millisecond resolution. Synchronization across systems is also possible to facilitate timed shut downs of larger numbers of power supply outputs for your DUT inputs. The above mentioned application note specifically addressed the topic of how to configure the system to properly shut down your DC inputs in sequence upon a fault generated by any of the system power supplies.

Below is a simple example of a sequenced turn on of four outputs in an N6705B mainframe. The sequencing is facilitated by setting a different turn-on delay time for each of the outputs (turn-off delays can be set independently). When all outputs are told to turn on simultaneously, the delays are activated resulting in a precisely controlled sequenced turn on. Figure 1 shows how easy it is to implement the delays for a turn-on event. In this case, I used four power supply outputs in an N6705B mainframe with delays set to 5 ms, 10 ms, 15 ms, and 20 ms. I set the output voltages to 10 V, 7.5 V, 5 V, and 3.3 V. You can also set the output voltage rise time (slew rate) independently for each output. Figure 2 shows the results using the scope that is built into the N6705B mainframe.





So you can see that with the proper power supply system, sequencing your multiple DC power supply inputs on your device to protect it from damage is easy. Keysight provides you with the solution to do just that adding to our arsenal of features that protect your valuable DUT.

Wednesday, September 17, 2014

Simulating battery contact bounce, part 1

One test commonly done during design validation of handheld battery powered devices is to evaluate their ability to withstand a short loss of battery power due to being bumped and the contacts momentarily bouncing open, and either remain operating or have sufficient time to handle a shutdown gracefully. The duration of a contact bounce can typically range anywhere from under a millisecond to up to 100 milliseconds long.

To simulate battery contact bouncing one may consider programming a voltage drop out on a reasonably fast power supply with arbitrary waveform capabilities, like several of the N675xA, N676xA, or N678xA series modules used in the N6700 series Modular DC Power System or N6705B DC Power Analyzer mainframe, shown in Figure 1. It is a simple matter to program a voltage dropout of specified duration. As an example a voltage dropout was programmed in Figure 2 on an N6781A SMU module using the companion 14585A software.



 Figure 1: N6700 series and N6705B mainframes and modules



Figure 2: Programming a voltage drop out using the N6705B and N6781A SMU module

While a voltage dropout is fine for many applications, like automotive, in many situations it does not work well for simulating battery contact bounce. The reason for this is there is one key difference to note about a voltage dropout versus a battery contact bounce. During a voltage dropout the source impedance remains low. During a battery contact bounce the source impedance is an open circuit. However, a DC source having the ability to generate a fast voltage dropout is a result of it being able to pull its output voltage down quickly. This is due to its ability to sink current as well as source current. The problem with this is, for many battery powered devices, this effectively short-circuits the battery input terminals, more than likely causing the device to instantly shut down by discharging any carry-over storage and/or disrupting the battery power management system. As one example consider a mobile device having 50 microfarads of input capacitance and draws 4 milliamps of standby current. This capacitance would provide more than adequate carryover for a 20 millisecond battery contact bounce. However, if a voltage dropout is used to simulate battery contact bounce, it immediately discharges the mobile device’s input capacitance and pulls the battery input voltage down to zero, as shown by the red voltage trace in Figure 3. The yellow trace is the corresponding current drain. Note the large peaks of current drawn that discharge and recharge the DUT’s input capacitor.



 Figure 3: Voltage dropout applied to DUT immediately pulls voltage down to zero

One effective solution for preventing the DC source from shorting out the battery input is to add a DC blocking diode in series with the battery input, so that current cannot flow back out, creating high impedance during the dropout. This is illustrated in Figure 4.


Figure 4: Blocking diode added between SMU and DUT

One thing to note here is the diode’s forward voltage drop needs to be compensated for. Usually the best way to do this just program the DC source with the additional voltage needed to offset the diode’s voltage drop. The result of this is shown in Figure 5. As shown by the red trace the voltage holds up relatively well during the contact bounce period. Because the N6781A SMU has an auxiliary voltage measurement input it is able to directly measure the voltage at the DUT, on the other side of the blocking diode, instead of the output voltage of the N6781A. As seen by the yellow current trace there is no longer a large peak of current discharging the capacitor due to the action of the blocking diode.



 Figure 5: Blocking diode prevents voltage dropout from discharging DUT 

Now you should have a much better appreciation of the differences between creating a voltage dropout and simulating battery contact bounce! And as can be seen a blocking diode is a rather effective means of simulating battery contact bounce using a voltage dropout. Stay tuned for my second part on additional ways of simulating battery contact bounce on an upcoming posting.
.


Wednesday, September 10, 2014

How do I protect my DUT against my power supply sense lines becoming disconnected, misconnected, or shorted?

The remote sense lines are a vital part of any good system power supply. As shown in Figure 1, by using a second, separate pair of leads for sensing, the output voltage is now regulated right at the DUT rather than at the output terminals on the power supply. Any voltage drops in the force leads are compensated for; assuring the highest possible voltage accuracy is achieved right at the DUT.




Figure 1: Remotely sensing and regulating output voltage at the DUT

Of course for this to work correctly the sense leads need to have a good connection at the DUT. However, what if the sense leads become disconnected, misconnected, or shorted?

One might think if one or both of the sense leads became disconnected, the sensed voltage would then become zero, causing the output voltage on the force leads to climb up out of control until the over voltage protect (OVP) trips. This turns out not to be the case, as a co-contributor here, Gary had pointed out in a previous posting “What happens if remote sense leads open?” (Click here to review). Basically a passive protection mechanism called sense protect maintains a backup connection between the sense line and corresponding output terminal inside the power supply in the event of a sense line becoming disconnected.

While sense protect is an indispensable feature to help protect your DUT by preventing runaway over-voltage, if a sense lead is open the voltage at your DUT is still not as accurate as it should be due to uncompensated voltage drops in the force leads. This can lead to miscalibrated DUTs and you would not even know that it is happening. To address this some system power supplies include an active open sense lead fault detection system. As one example our 663xx Mobile Communications DC Sources check the sense lead connections during each output enable and will issue a fault protect and shut down the output if one or both sense leads become disconnected. It will also let you know which of the sense leads are disconnected. It can be enabled and disabled as needed. I had written about this in a previous posting “Open sense lead detection, additional protection for remote voltage sensing” (Click here to review).

Taking sense protection further, we have incorporated a system we refer to as sense fault detect (SFD) in our N6900A and N7900A Advanced Power System (APS). It can be enabled or disabled. When enabled it continually monitors the sense lead connections at all times. If it detects a sense fault it sets a corresponding bit in the questionable status group register as well as turn on status annunciator on the front panel to alert the user, but does not disable the output. Through the expression signal routing system a “smart trigger” can be configured as shown in Figure 2 to provide a protect shutdown on the event of a sense fault detection.  In all, sense fault detect on APS provides a higher level of protection and flexibility.




Figure 2: Configuring a custom opens sense fault protect on the N6900/N7900 APS

What happens if the sense leads become shorted? Unlike open sense leads, in this case the output voltage can rise uncontrolled. The safeguard for this relies on the over voltage protect system. The same thing happens if the sense leads are reversed. The power supply will think the output voltage is too low and keep increasing the output voltage in an attempt to correct it. Again the safeguard for this relies on the over voltage protect system. The N6900/N7900 APS does actually distinguish the difference when the sense leads are reversed by generating a negative OVP (OV-) fault, giving the user more insight on what the fault is to better help in rectifying the problem.

Remote voltage sensing provides a great benefit by being able to accurately control the voltage right at the DUT. Along with the appropriate safeguards against sense lead misconnections you get all the benefit without any of the corresponding risks!

Remote sense protect and sense fault detect were just two of many topics about in my seminar “Protect your device against power related damage during test” I gave last month. As it was recorded it is available on demand if you have interest in learning more about this topic. You can access the sign up from the following link: (Click here for description and to register)

Sunday, August 31, 2014

How do I transfer files from my DC Power Analyzer to my PC?

Hi everybody!

I got back from my vacation just in time to get my August blog post out.  We typically try to shy away from product specific blog postings here at Watt's Up but this is a topic that I get a bunch of questions on in my support job and this is a great place for me to address it.

The Keysight N6705B DC Power Analyzer has an internal flash drive that stores information such as datalogs and scope waveforms.  When we first came out with the N6705B, it had a 64 MB drive (it is crazy how small that seems today).  Present N6705Bs have a 4 GB drive in them.  Since you can create datalogs of up to 2 GB in size, even a 4 GB drive can get full.  Today I am going to talk about how to get a file out of the internal drive of the N6705B and onto your PCs hard drive.

The way that I see it, there are three ways to get a file off the N6705B:

  1. The old fashioned way: You use a thumb drive and manually transfer the files that way.  The disadvantage here is that you need to have a thumb drive and there is no way to automate the process.
  2. You can use the N6705B LXI web interface.  There's a utility there that can transfer files bwtween the N6705B and your PC.  The disadvantages of this are that you cannot automate it and you can only do this if you are connected via LAN.
  3. There is a command (MMEM:DATA?) that will read back the contents of a file so you could write a SCPI program to do this.  This disadvantage here is that you need to write a program.  Luckily, I have done this in the past myself and I am more than willing to help!
Quite a few years ago, I wrote a VB 6 program that does number three.  The binary data for the file is in IEEE binary block format.  I find that the easiest way to read and write data in this format is to use Keysight VISA-COM and use the ReadIEEEblock function.  Here is a screen shot of my program listing:


As you can see in the program, I basically read the contents of the file default.dlog into filedata which I have dimensioned as  a byte array.  After I read all the data in, I kill any null data in the array and then copy it into a file that I have stored on my hard drive.  All in all, if you use this method it is pretty easy.

That's all I have for this month.  Please let me know if you have any questions or if you have discovered another way to transfer files.


Thursday, August 28, 2014

What can cause a power supply output voltage to exceed its setting?

We have done a number of posts on power supply protection topics covering both voltage and current issues:

Safeguarding your power-sensitive DUTs from an over power condition

How does power supply overvoltage protection work? 

Protect your DUT from over-current in more ways than one

What is a power supply’s over current protect (OCP) and how does it work?

Overvoltage protection: some background and history

Protect your DUT: use sense leads for overvoltage protection (OVP)

Types of current limits for over-current protection on DC power supplies

Protect your DUT with power supply features including a watchdog timer

And just last week, on August 20, 2014, my colleague and fellow Watt’s Up? blog contributor, Ed Brorein, presented a live webcast called “Protect Your Device Against Power-Related Damage During Test” which was recorded and can be accessed here. Before he presented the seminar, Ed mentioned it here.

Many of these posts talked about how the power supply responds to an overvoltage or overcurrent condition. Today I want to talk about what causes an overvoltage condition. I’m defining an overvoltage condition as a condition that causes the power supply output voltage to exceed its setting. Let’s take a look at some of the things that can cause this to happen.

Causes of power supply output voltage exceeding its setting

User-caused miswires
These miswires should be found and corrected during test setup verification before a device under test (DUT) is connected to the power supply. Possible miswires and their effect on the power supply output voltage are:

  • Shorted sense leads – the output voltage will rapidly rise above the setting. Keysight power supplies will prevent the output from rising above the overvoltage protection (OVP) setting.
  • Reversed sense leads – on most power supplies, the output voltage will rapidly rise above the setting and on Keysight supplies, it will be stopped by the OVP circuit. On our N6900/N7900 Advanced Power System (APS) power supplies, this condition is caught sooner: OV- is triggered when the output reaches about 10% of the rated voltage, so the output does not have to rise to the setting and above.
  • Open sense leads – If your power supply does not have protection for open sense leads, it is possible for your output to rapidly rise above the setting if one or both sense leads are open. Keysight power supplies have built-in sense protect resistors which limit the output voltage rise to about 1% above the setting. The voltage will continue to be regulated there. In addition to limiting the output to about 1% above the setting with an open sense lead, Keysight N6900/N7900 APS power supplies have a feature called open sense lead detection. When enabled, open sense lead detection will cause a sense fault (SF) status about 50 us after open sense leads are detected. This status does not turn off the output, but it can be configured to turn off the output using the advanced signal routing capability.
  • Special note about N7900 power supplies (not N6900): these models have output disconnect relays that open upon a protection fault. These mechanical relays take about 20 ms to open. Before they open, the output downprogrammer circuit is activated for about 2 ms and draws about 10% of rated output current to reduce the output voltage. The N7976A and N7977A (both higher voltage models) also have solid state relays in series with the mechanical relays. Upon a protection fault on these 2 models, the downprogrammer activates for 2 ms followed immediately by the solid state relays opening and then the mechanical relays open about 20 ms later.
Inadvertent wiring failure
  • Sense leads inadvertently become shorted – power supply response is the same as mentioned above under shorted sense leads
  • Sense leads inadvertently become open – power supply response is the same as mentioned above under open sense leads
  • Sense leads should never become inadvertently reversed, nevertheless, the power supply response is the same as mentioned above under reversed sense leads

Power supply fault (circuit failure)
Note that Keysight’s overall power supply failure rate is very low. Since the below mentioned failures are a subset of all failures, they are very rare. This means that failures that cause the output to go to a higher-than-desired value are a small percent of a small percent, and while not impossible, they are extremely unlikely events.
  • Power element fails (shorts)
    • Series regulator – when a series regulator power element shorts, the output very quickly rises above the rated voltage of the power supply. The only way to limit this is to trip OVP and either fire an SCR across the output to bring the voltage back down or open output relays. For example, the Keysight N678xA models use a series regulator. When OVP trips on N678xA models, output relays are opened to protect the DUT. Solid state relays very quickly open first followed by mechanical relays about 6 ms later.
    • Switching regulator – when a Keysight switching regulator power element shorts, the output will go toward zero volts instead of rising since Keysight switching regulators use power transformers and no power can be transferred through the transformer without the switching elements turning on and off. For example, all N6700 and N6900/N7900 series models use switching regulators except the N678xA models (series regulators).
    • Note that if a power element fails open using either power regulation scheme, the output voltage will fall, not rise, so this condition is not a concern when looking at excessive output voltage possibilities.
  • Regulation circuit failure (bias supply, DAC, amplifier, digital comparison processor, etc.)
    • There are various circuits that could fail and cause the output voltage to rise in an uncontrolled manner. Keysight power supplies have OVP designed to respond to these failures. In series regulators, an SCR across the output can fire to reduce the voltage or output relays can open. In switching regulators, the pulse width modulator is turned off to prevent power from flowing to the output, downprogrammers are activated to pull any excessive voltage down, and output relays are opened (when present) to disconnect the output from the DUT.
    • Multiple parallel failures – if both a regulating circuit fails that causes the output to rise AND the OVP circuit fails, there would be nothing to prevent the output voltage from rising above the setting. While this is possible, it requires just the right combination of multiple circuit failures and is therefore extremely unlikely.
Output response to load current transients
  • It is possible for the output voltage to temporarily rise above the setting for short transients in response to fast load current changes (especially unloading). If the voltage excursion is high enough and long enough, it is possible that the OVP will activate and respond as outlined above.

External power source
  • It is possible for an external source of power (such as a battery, charged capacitor, inductor with changing current, or another power supply) to cause the voltage to go above the setting. The OVP will respond to this condition as outlined above. If the external power source can provide more current than the rating of the power supply and an SCR circuit is used in the power supply, it is prudent to put a fuse in series with the external source of power to prevent damage to the power supply SCR and/or output circuit from excessive current.
So you can see that there are a number of ways in which the output voltage can rise above the setting. Luckily, Keysight design engineers are aware of these possibilities and have lots of experience adding protection circuits to prevent damage to your DUT!

Wednesday, August 20, 2014

Some differences between constant current (CC) and constant resistance (CR) loading on your DUT’s performance

Most electronic loads provide constant current (CC), constant resistance (CR) and constant voltage (CV) loading. Some also offer constant power (CP) loading as well. The primary reason for this is this gives the test engineer a choice of loading that best addresses the loading requirement for the DUT, which invariably is some kind of power source.

Most usually the device should be tested with a load that reflects what the loading is like for its end use. In the most common case of a device being predominantly a voltage source the most common loading choices are either CC or CR loading, which we will look at in more detail here. Some feel they can be used interchangeably when testing a voltage source. To some extent this is true but in some cases only one or the other should be used as they can impact the DUT’s performance quite differently.

Let’s first consider static performance. In Figure 1 we have the output characteristics of an ideal voltage source with zero output resistance (a regulated power supply, for example) and a non-ideal voltage source having series output resistance (a battery, for example).  Both have the same open circuit (no load) voltage. Superimposed on these two source output characteristics are two load lines; one for CC and one for CR. As can be seen they are set to draw the same amount of current for the ideal voltage source. However, for the non-ideal voltage source, while the CC load still continues to draw the same amount of current in spite of the voltage drop, not surprisingly the CR load draws less current due to its voltage-dependent nature.




Figure 1: CC and CR loading of ideal and non-ideal voltage sources

CC loading is frequently used for static power supply tests for a key reason. Power supplies are usually specified to have certain output voltage accuracy for a fixed level of current. Using CC loading assures the loading condition is met, regardless of power supply’s output voltage being low or high, or in or out of spec. Non-ideal voltage sources, like batteries, present a little more of a problem and are often specified for both CC and CR loading as a result, to reflect the nature of the loading they may be subjected to in their end use. Due to a battery's load-dependent output voltage, trying to use one type of loading in place the other becomes an iterative process of checking and adjusting loading until the acceptable operating point is established.

Let’s now consider dynamic performance.  CC loading generally has a greater impact on a power supply’s ability to turn on as well as its transient performance and stability, in comparison to CR loading. When the power supply first starts up its output voltage is at zero. A CR load would demand zero current at start up. In comparison a CC load still demands full current. Some power supplies will not start up properly under CC loading. With regard to transient response and stability, CR loading provides a damping action, increasing current demand when the transient voltage increases and decreases demand when the transient voltage decreases, because the current demand is voltage dependent. CC loading does not do this, which can negatively influence transient response and stability somewhat. Whether CC or CR loading is used depends on what the power supply’s specifications call out for the test conditions. Batteries have some dynamic considerations as well. Their output response can be modeled as a series of time constants spanning a wide range of time. This presents somewhat of a moving target for an algorithm that uses an iterative approach to settling on an acceptable operating point.


This is just a couple of examples of how a load’s characteristic affects the performance of the device it is loading, and why electronic loads have multiple operating modes to select from, and worth giving thought next time towards how your device is affected by its loading!

Tuesday, August 5, 2014

Upcoming Seminar on Protecting Your Device against Power-Related Damage during Test

Here on “Watt’s Up?” we have provided a good number of posts about various protection features incorporated into system power supplies to protect your device against power-related damage during test. Just recently my colleague Gary posted “How Does Power Supply Over-Voltage Work?” (Click here to review) Here he reviews inner workings of different OVP implementations.  I recently posted “Safeguarding Your Power-Sensitive DUTs against an Over-Power Condition” (Click here to review) Here I go over a method to protect your DUT against excess power when other power supply features like over current protection may be less than ideal.

The reason why we frequently share power-related protection topics here is protecting your DUT is extremely important, there are a lot of different capabilities incorporated in system power supplies for this purpose, and there are a lot of practical considerations when putting them to use.  

Hopefully a number of you have found our posts on protection-related topics of help. Because this is a very important topic and there is so much more you should know about it I will be giving a live web-based seminar “Protecting Your Device against Power-Related Damage during Test” on August 20th, just a few weeks away from today. I will be going over a number of protection-related topics which we have not yet covered here on “Watt’s Up?”.  One of my objectives is to provide a more holistic view of the many ways a system power supply is able to better safeguard against power-related damage as well as what is practical to expect when using these various capabilities incorporated in the power supply.

You can register online at the following (Click here for description and registration page) In case you are not able to attend the live event on August 20 you will be able to register and listen to seminar afterward as well, as it will be recorded.


So if protecting your device against power-related damage is important to you I hope you are able to attend the seminar!

Thursday, July 31, 2014

Using an IVI Class Compliant Driver

Hi everybody!

In the past, I have talked about the different driver options that we offer.  One of them is the IVI-COM/IVI-C driver.  IVI actually stands for Interchangeable Virtual Instruments. Today I am going to talk about how you can make that abbreviation true using the fact that our power supply can use the IviDCPwr class.   I have received  a few questions in the past about how to do this and every time I do it, it takes me a while to remember all of the steps.  Posting it here will put it somewhere where people (including me!) can find it easily

To start off you need to download and install the following:
  • The Agilent N6700 IVI-COM/IVI-C  driver from Agilent’s website.  If you get the driver from somewhere else, I am not sure how it will work.
  • NI VISA since you will need NI-MAX
  • IVI Compliance package

Once you have all of this, you are ready to get started.


The first thing that you need to do is set your targeted instrument in NI-MAX.  I have a N6702A connected to my LAN.  Here's how it shows up in MAX:


After that, you want to go to the "IVI-Drivers" menu, select the "Driver Sessions" item and right click on it to select "Create new".   From there, click on the "software" tab and select the appropriate driver, in this case the AgN67xx driver.  


You can see here that the driver complies to the IviDcpwr class whcih is what we will be using.  

The next thing to do is in the "Hardware" Tab of the same menu.  You need to specify which instruments use this driver.  Click on "Add" to add your instrument.  It should look like this:



 One thing that I cannot stress enough is that you need to check that checkbox.  In you don't, this will not work and you will spend a little bit of time trying to figure out why you are getting resource not found errors.  Believe me I know this from experience!  After you double check everything make sure that you click on "Save IVI Configuration".

Now choose "Logical Names".  Right click on it and select "Create New".  I created a logical name called "MPS" (this stands for Modular Power System if you were wondering).  You need to refer it to the correct driver session:


Make sure to click on "Save IVI Configuration" again.

With that, you are ready to actually start!  I used Visual C++ 2010 to write my example.  Make sure that you have all of the IVI directories properly entered in your project.  Also make sure that you reference the ividcpwr.lib file in your "linker" settings. 

Here is my program listing:

#include <stdio.h>
#include "IviDCPwr.h"

void main()
{
ViStatus status;
ViSession session;
ViRsrc resource = "MPS";
ViConstString options  = "QueryInstrStatus=true, Simulate=false, DriverSetup= Model=, Trace=false";
ViBoolean idQuery = VI_FALSE;
ViBoolean reset   = VI_TRUE;
ViBoolean enabled = VI_TRUE;
ViChar ChannelName[16] = "";
        ViInt32 index = 2;
        ViInt32 bufferSize = 256;
ViConstString Cname;
ViReal64 Vmeasurement;
ViReal64 Ameasurement;

// This program initializes a session, programs a voltage and current on channel 2, 
// enables the output, and measures voltage and current.

status = IviDCPwr_InitWithOptions(resource, idQuery, reset, options, &session);
status = IviDCPwr_GetChannelName (session,index, bufferSize,ChannelName);

Cname = ChannelName;

status = IviDCPwr_ConfigureOutputEnabled (session,Cname,enabled);
status = IviDCPwr_ConfigureVoltageLevel (session,Cname,4.0);
status = IviDCPwr_ConfigureCurrentLimit(session, Cname, IVIDCPWR_VAL_CURRENT_TRIP, 1);

status = IviDCPwr_Measure (session,Cname,IVIDCPWR_VAL_MEASURE_VOLTAGE,&Vmeasurement);
printf("Measured Voltage on channel is : %f V \n",Vmeasurement);

status = IviDCPwr_Measure (session,Cname,IVIDCPWR_VAL_MEASURE_CURRENT,&Ameasurement);
printf("Measured Current on channel is : %f A \n",Ameasurement);

status = IviDCPwr_close (session);

printf("\n Done - Press Enter to Exit");
getchar();  
}

I am not going to go over the program in detail but here are the key things to note:
  • You need to include "IviDCPwr.h".  All the functions are in there.  You do not need to reference the instrument specific driver.
  • When you initialize the unit, you can refer to it by the name that you define in the "Logical Names" tab above.  In my case, I use "MPS".
  • This is a modular power supply.  The variable "index" is controlling the channel.  
  • I have tested this program and it works properly.
In theory, you should be able to swap this power supply out with another class compliant power supply with minimal programming changes (though in this case if you switch to a single output supply you would need to take out the references to the multiple channels).

One last thing that I want to note is that this will be the last Watt's Up blog posted under the Agilent banner.  Don't worry, we will still be posting the same great content but it will be under a Keysight Technologies banner.  I have been working for Agilent for 14 years now so it will be odd at first to have a new name but I am looking forward to posting many more blogs as a Keysight employee.  Goodbye Agilent Technologies it's been an interesting 14 years!





Wednesday, July 30, 2014

How does power supply overvoltage protection work?

In past posts, I’ve written about what overvoltage protection (OVP) is (click here), where it is sensed (click here), and its history (click here). Today I want to cover a little about how it works inside the power supply.

As a quick review, OVP is a built-in power supply feature that protects the device under test (DUT) from excessive voltage by shutting down the power supply output if it senses voltage that exceeds the OVP setting. Depending on the power supply design, the voltage may be sensed at the output terminals or at the sense terminals.

Most of Agilent’s older power supplies sense OVP at the output terminals and use a simple analog comparator circuit to determine when the output exceeds the OVP threshold set by the user. The OVP threshold is translated into an overvoltage reference voltage (OVref) that could come from a simple divider with a potentiometer for adjustment (uncalibrated and rather crude) or from a more sophisticated calibrated digital-to-analog converter (DAC) voltage. When the comparator sees the scaled output voltage exceed the OVref voltage, the overvoltage trip (OVtrip) signal is generated which shuts down the power supply output and, on some designs, fires an SCR across the output. See Figure 1 for a simplified representation of this arrangement.

Some of our newer designs look for an overvoltage condition on the sense terminals for better accuracy. In this scheme, the sense voltage feeds one comparator input through a differential amplifier while the other comparator input is driven by the user-set calibrated OVref voltage. See Figure 2. An output terminal OVP as described above must also be used as a backup with these designs (not shown in Figure 2) because some OV conditions are not caught when sensing OV on the sense terminals. For example, if the sense leads are shorted together, the output voltage will go up uncontrolled yet the sense voltage will remain at zero volts.

Some other OVP designs use a calibrated analog-to-digital converter (ADC) on either the output terminal voltage or the sense terminal voltage and compare the measured digital data to the user’s threshold setting. See Figure 3. To avoid nuisance OVP shutdowns, this scheme frequently requires several analog-to-digital conversions in a row exceed the threshold (for example, 4). This adds a minor delay to the OVP response time. With fast ADC conversion rates, the OVP response can still be just a few tens of microseconds and it is worth spending a little extra time to gain immunity against nuisance tripping. For example, the Agilent N6781A uses this technique. Since it does an ADC conversion every 5 us and requires 4 consecutive conversions exceed the OVP threshold to cause a shutdown, it will trip in less than 30 us.

So you can see that there are various ways to implement overvoltage protection. In all cases, rest assured that your DUT is protected against excessive voltage when using Agilent power supplies!

Tuesday, July 22, 2014

What does it mean when my Agilent power supply displays “Osc”?

When using certain higher performance power supplies from Agilent, like the N678xA series source-measure modules, you may discover that the output has shut down and an annunciator displaying “Osc” shows up on the front panel meter display, like that shown in Figure 1 for the N6705B DC Power Analyzer mainframe. 



Figure 1: DC Power Analyzer front panel meter displaying “Osc” on channel 1 output

As you would likely guess, Osc stands for oscillation and this means the output has been shut down for an oscillation fault detection. In this particular instance an N6781A high performance source measure module was installed in channel 1 of the N6705B DC Power Analyzer mainframe.

The N678xA series source measure modules have very high bandwidth so that they can provide faster transient response and output slew rates. However, when the bandwidth of the power supply is increased, its output stability becomes more dependent on the output wiring and DUT impedances. To provide this greater bandwidth and at the same time accommodate a wider range of DUTs on the N678xA modules, there are multiple compensation ranges to select from, based on the DUT’s input capacitance, as shown in the advanced source settings screen in Figure 2.



Figure 2: DC Power Analyzer front panel displaying advanced source settings for the N678xA

Note that “Low” compensation range supports the full range of DUT loading capacitance but this is the default range. While it provides the most robust stability, it does not have the faster response and better performance of the “High” compensation ranges.

As long as the wiring to the DUT is correctly configured and an appropriate compensation range is selected the output should be stable and not trip the oscillation protection system. In the event of conditions leading to an unstable condition, any detection of output oscillations starting up quickly shut down the output in the manner I captured in Figure 3. I did this by creating an instability by removing the load capacitance.



Figure 3: Oscillation protection being tripped as captured in companion 14585A software

In rare circumstances, such as with some DUTs drawing extremely high amplitude, high frequency load currents, which may lead to false tripping, the oscillation protection can be turned off, as shown in Figure 4.



Figure 4: N678xA oscillation protection disable in N6705B DC Power Analyzer advance protection screen

Oscillation protection is a useful mechanism that can protect your DUT and your power supply from an excessively high AC voltage and current due to unstable operating conditions. Now you know what it means next time you see “Osc” displayed on the front panel of you Agilent power supply and what you need to do to rectify it!

.

Monday, July 14, 2014

Extending the usable bandwidth of the DC source when performing AC disturbance testing on your DUT

A lot of various products that run off of DC power, often destined to be used in automobiles and other types of vehicles, but even quite a number in stationary applications as well, require validation testing for impact of having AC disturbances riding on top the DC powering them.

 Conducting this type of testing is often a big challenge for the test engineer in finding a solution that adequately addresses the disturbance test requirements. It usually requires multiple pieces of hardware:
  • A DC power supply is used to provide the DC bias voltage and power.
  • A power amplifier is used to generate the AC disturbance.
  • A separate ARB /function generator is needed to produce the reference signal for the disturbance

Coupling the DC power supply and power amplifier together is extremely problematic. While it would be great to just directly connect the two in series, this rarely can be done in practice as the power amplifier usually cannot handle the DC current of the power supply. A variety of custom approaches are then typically taken, all with their associated drawbacks.

An article about this very topic was published last year, written by a colleague I work with, Paul Young in our R&D group. As he noted it’s great when the power source can provide both the DC power as well as the AC disturbance as this is a big savings over trying to incorporate multiple pieces of equipment. Paul’s article “Extending the Usable Bandwidth of a Programmable Power Supply for Generating Sinusoidal Waveforms” (click here to review) is an excellent reference on this and the inspiration for my blog posting this week.

Our N6705B DC Power Analyzer in Figure 1 and recently introduced N7900A series Advanced Power System (APS) 1KW and 2KW power supplies in Figure 2 have proven to be very useful for doing a variety of testing where transients and audio disturbances are needing to be introduced on top of the DC that is powering the DUT.


Figure 1: Agilent N6705B DC Power Analyzer and N6700 series DC power modules


Figure 2: Agilent N7900A series 1KW and 2KW Advanced Power System and N7909A Power Dissipator

The reasons for these products being useful for disturbance testing are due to their built in ARB generation capability in conjunction with having a respectable AC bandwidth, on top of being able to source the DC power. Everything can be done within one piece of equipment.

A very common test need is to superimpose a sinusoidal disturbance in the audio range. One example of this is in automobiles. The alternator “whine” AC ripple induced on top of the DC output falls within this category. Our 1KW and 2KW N7900A series APS are good for applications needing higher DC power. However, at first glance the specified AC bandwidth of 2 kHz on does not look like it would work well for higher audio frequencies. The AC response of an N7951A from 1 kHz to 10 kHz is shown in Figure 3. This was captured using the 14585A companion software to set up its ARB.  There is noticeable roll off for higher frequency, as expected.


Figure 3: N7951A APS AC response characteristics captured using companion 14585A software

However, it’s worth noting that the roll off is gradual and very predictable. In the case of superimposing a relatively small AC signal on top of the DC output it is easy to compensate by measuring the attenuation at the given frequency and applying a gain factor to correct for it, as I did as shown in Figure 4. As one example, for 5 kHz, I programmed 2.38 volts peak to get the desired 1 volt peak.


Figure 4: N7951A APS AC response characteristics after gain correction

As can be seen it was simple to now get a flat response over the entire range. A limiting factor here is sum of the programmed DC value plus programmed AC peak value needs to be within the voltage programming range of the power supply being used. In practice, when the AC disturbance is reasonably small it is easy to cover a wide range of frequency.

Another factor to consider is capacitive loading. Some DC powered products sometimes have a fairly substantial filter capacitor built in across the DC power input. This will increase the peak current drain from the power supply when AC is applied on top of the DC. As an example a 100 microfarad capacitor will draw a peak current of 6.28 amps when a 10 kHz, 1 volt peak AC signal is applied. There may also be series impedance limiting the peak current, but whatever this AC peak current is it needs to be included when determining the size of the power supply needed.

With these basic considerations you will be able to perform AC disturbance testing over a much greater bandwidth as well!

.

Monday, June 30, 2014

Doing Inrush Current Testing with the New AC6800 AC Sources

Hi everybody,

It is the last day of the month and therefore time for me to get my blog post out.  I want to build on Gary's latest post concerning the new Agilent/Keysight AC6800 AC Sources (Click Here).  One of the key features that Gary mentioned is inrush current testing.

My colleague Russ did a video on inrush current testing for the launch.  This gives you a little bit of perspective on why you want to do the testing and gives some good tips.


When you do inrush current testing, you typically want the highest value that the current has reached when the power is enabled.  The AC6800 has a peak hold current value that will store this value for you.  The unit stores the highest current value it has measured since that value was last cleared (either manually or from power on).  One key thing to remember is to always clear out the peak hold value before doing your measurement so that you know that your measurement is up to date.

The AC6800 can synchronize the enabling of the output to a user defined phase.  When you specify the phase, it will enable the output at that phase in the sine wave (anything from 0 to 360 degrees).  The combination of the peak hold measurement and this phase synchronization are what make this testing possible.  

I  did a video for the launch where I did a tour of the front panel, including a short description of how to do inrush current testing:

  



I also have a programming example on this topic.  Below is a snippet of a program that I wrote in VB.NET using Agilent VISA-COM:


That's about it for me this month.  Please let us know if you have any questions in the comments.  




Monday, June 23, 2014

New Agilent Basic AC Power Sources

I have mentioned several times before that I avoid posting product-only-focused material in this blog, but when we announce something new, it is appropriate for me to mention it here. Today, a press release went out about our new AC sources (click here to view). You may not realize it, but this press release marks the end of an era; these are the last power products Agilent Technologies will ever announce! Now don’t go all non-linear on me…..I’m sure we will continue to design and release new power products for decades to come. But as I mentioned in a previous post (click here), as of August 1, 2014, our products will be Keysight Technologies products and not Agilent Technologies products. So these new AC sources will be rebranded to Keysight in a few weeks, but because we are releasing them before the company name change is official, we have to release them as Agilent and not Keysight. Go figure….

Anyway, what are these new Agilent (soon to be Keysight) AC sources? Well, the model numbers will remain the same through the company name change and they are:

  • AC6801A (500 VA)
  • AC6802A (1000 VA)
  • AC6803A (2000 VA)
  • AC6804A (4000 VA)

This new AC6800 Series of basic AC sources compliments our previous line of more sophisticated AC sources (click here for those) by adding lower cost models and higher power. Here is what the new series looks like (of course, the big one is the 4 kVA model):
All four new AC6800 models share these features:
  • Output capabilities
    • Single-phase output
    • 2 ranges: 0 to 135 Vrms; 0  to 270 Vrms
    • 40 Hz to 500 Hz and DC
    • Sine wave (other waveforms with analog interface)
  • Measurement capabilities
    • Vac, Vdc, Vrms
    • Iac, Idc, Irms, Ipeak, Ipeak&hold, crest factor
    • Watts, VA, VAR, power factor
  • Other
    • Universal AC input
    • LAN (LXI-Core), USB, optional GPIB
    • Optional analog programming interface
The differences in the models are due to the output power ratings and can be summarized by looking at the output characteristics when producing an AC output or a DC output:

For a DC output, the graph above shows only the positive voltage and current quadrant (first quadrant). The output is equally capable of putting out negative voltage and negative current (the third quadrant) and the ratings are the same (except negative). These AC sources only source power; they cannot sink (absorb) power.

These AC sources do have one advanced feature: you can set the phase angle at which the output turns on. Coupled with the ability to measure peak current (and hold the peak current measurement), this is good for AC inrush current measurements.
To view the data sheet, click here.

So that’s the new line of basic AC power sources from Agilent and the last power products to be announced by Agilent. I wonder when the first Keysight power product announcement will be…..wouldn’t you like to know!?!?